

Visual Molecular Dynamics

User Guide

Robert Johnson bobjohnson1981@gmail.com

Introduction

VMD (Visual Molecular Dynamics) is a software package for the 3D visualization, modeling and analysis of molecular systems. It is developed and freely distributed by the Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign. VMD is a powerful instrument used in **real** scientific research. Additionally, it is also a highly effective teaching tool. This is an abbreviated guide that covers the download, installation and use of VMD. For a tutorial, see <u>http://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html</u>. Further questions can be sent to Bob Johnson: <u>bobjohnson1981@gmail.com</u>.

Download and Installation

- 1. Go to http://www.ks.uiuc.edu/Research/vmd
- 2. Click on "Download VMD" on the left side of the screen.
- 3. Choose the version you wish to download

Windows users should select: <u>Windows OpenGL</u> (Microsoft Windows XP/Vista/7 (32-bit) using OpenGL)

Mac users should select: <u>MacOS X OpenGL (Intel x86)</u> (Apple MacOS-X (10.4.7 or later) with hardware OpenGL (native bundle))

Users of older Macs¹ may have to select: <u>MacOS X OpenGL (PowerPC)</u> (Apple MacOS-X (10.4.7 or later) with hardware OpenGL (native bundle))

- 4. Register a username and password
- 5. Download the file
- 6. Windows users: To install, run the file that was download and follow the installation instructions
- 7. To run VMD:

Windows users: Click on VMD from the Start Menu (located in **Programs**→**University of Illinois**→**VMD** by default)

Mac users: Run the .dmg file

¹ To determine what type of processor is in your Mac, go to the **Finder** and choose **About this Mac** from the **Apple Menu**

VMD Input – PDB Files

VMD accepts many types of input files. However, among the most common types are **PDB** (Protein Data Bank) files which have the .pdb file extension. You can find PDB files on the web for many molecules ranging from small organic molecules to large biomolecules like proteins and DNA. Normally, you can simply load these files into VMD without viewing or editing their content. However, to use VMD effectively, it is important to know some of the basics about these files.

PDB files contain a list of atoms along with their three-dimensional coordinates. Each atom has an **index** and a **name**. Collections of atoms are grouped into **residues**. Each residue has its own number.

Below is a sample PDB file of a single water molecule. There are three atoms: an oxygen named **O**, a hydrogen named **H1** and another hydrogen named **H2**. These three atoms are grouped into a residue named **WAT**.

A sample PDB file for hemoglobin, a more complicated molecule, is shown below. The molecule is divided up into many residues with each residue representing a single amino acid. Orange and blue boxes are drawn around the first two residues – a valine (VAL) and leucine (LEU) amino acid, respectively.

Many biological molecular structures are composed of several subunits that are held together by noncovalent (hydrogen bonds, van der Waals forces, etc.) interactions (e.g. double-stranded DNA). Within a PDB file, these subunits are collections of residues grouped into a **chain** designated by a single letter code in the fifth column.

File Edit Format View Help ATOM 1 N VAL A 1 18.432 -2.931 3.579 1.00 37.68 ATOM 2 CA VAL A 1 19.662 -2.549 2.806 1.00 35.41 ATOM 3 C VAL A 1 19.282 -1.939 1.441 100 34.04 ATOM 6 CGI VAL A 1 20.659 -3.754 2.825 1.00 35.59 ATOM 6 CGI VAL A 1 20.109 -4.992 2.222 1.00 37.84 ATOM 7 CG2 VAL 1 21.982 -3.272 2.245 1.00 27.27 ATOM 9 CA LEU 2 19.749 -0.064 -0.067 1.00 27.27 ATOM 10 C EU 2 20.204 1.339 0.210 1.00 25.79 ATOM 13 CG LEU 2 20.031 3.495 1.202 </th <th>📕 hemo</th> <th>globin.</th> <th>pdb -</th> <th>Notepa</th> <th>l</th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>	📕 hemo	globin.	pdb -	Notepa	l					_	
ATOM 1 N VAL A 1 18.432 -2.931 3.579 1.00 37.68 ATOM 2 CA VAL A 1 19.662 -2.549 2.806 1.00 35.41 ATOM 3 C VAL A 1 19.282 -1.939 1.441 1.00 34.04 ATOM 5 CB VAL A 1 20.659 -3.754 2.825 1.00 35.59 ATOM 6 CGI VAL A 1 20.659 -3.754 2.825 1.00 36.73 ATOM 6 CGI VAL 1 21.982 -3.272 2.245 1.00 36.73 ATOM 9 CA LEU 2 19.905 -0.786 1.169 1.00 27.27 ATOM 10 C EU 2 19.749 -0.064 -0.0671 1.00 27.57 ATOM 12 CB LEU A 2 17.858 2.278 0.784 1.00 26.00 <t< th=""><th>File Edit</th><th>Format</th><th>View</th><th>Help</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	File Edit	Format	View	Help							
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1 2 3 4 5 6 7 9 10 112 13 14 15 16 17 8 9 0 11 123 14 15 16 17 8 9 0 21 223 24 5 26 27 28	N CA C O CB CG2 N CA C O CB CG2 N CA C O CB C CD2 N CA C O CB C CD2 N CA C O CB C CD2 N CA C O CB C CD2 N CA C O CB C CG2 N CA C O CB C CD2 N CA C O CB C CD2 C CD	VAL A A A A A A A A A A A A A A A A A A		18.432 19.662 19.282 20.659 20.109 21.982 19.905 19.749 20.57 20.204 19.275 17.858 20.031 19.759 20.271 20.813 20.493 19.184 18.391 21.662 22.305 21.226 22.988 23.374 22.198	-2.931 -2.549 -1.939 esidue -3.754 -4.992 -3.272 -0.786 -0.064 esidue 2.508 2.278 3.495 -1.096 -1.666 -0.467 0.715 -2.454 -1.499 -0.752 0.185 1.028 2.265 -0.692 -1.960 -2.127	3.579 2.806 1.441 0.695 2.825 2.222 2.245 1.169 -0.067 -1.213 -1.212 0.284 0.784 1.202 -2.248 -3.488 -4.319 -4.104 -4.209 -4.959 -5.319 -6.258 -6.854 -6.963 -7.358 -6.565 -5.588	$\begin{array}{c} 1.00\\$	37.68 35.41 34.04 33.95 35.59 37.84 36.73 29.21 27.27 27.19 27.58 25.79 30.66 26.00 29.07 25.72 23.89 24.21 24.42 23.01 24.42 23.01 24.75 23.90 24.65	

Chain

Finding PDB Files

PDB files for many molecules can be found on the web by simply typing "<molecule> pdb" into a search engine. Here, <molecule> is the name of whatever molecule you are interested in. This is usually the best place to start. You can also visit sites such as:

- Bob Johnson's VMD Resource Page (<u>www.sas.upenn.edu/~robertjo/pdb</u>)
- Klotho (http://www.biocheminfo.org/klotho)
- Protein Data Bank (<u>http://www.pdb.org</u>)
- Nucleic Acids Data Bank (<u>http://ndbserver.rutgers.edu</u>)

Using the Protein Data Bank

The Protein Data Bank contains PDB files for thousands of proteins whose structure has been resolved experimentally and is an indispensible resource in modern biological research.

Go to <u>www.pdb.org</u>. Type the name of the protein of interest in the search box and click **Search**.

PROTEIN DATA BANK	An Information Portal to Biological Macromolecular Structures As of Tuesday Oct 20, 2009 at 5 PM PDT there are 60936 Structures 🔂 🚱 PDB Statistics 🌚
WHAT'S NEW HELP PRINT	PDB ID or keyword 💌 Search ? Advanced Search

As an example, here are the first few search results for "myoglobin".

🕹 RCSB PDB : Query Results - Mozilla	Firefox		
File Edit View History Bookmarks To	ools <u>H</u> elp		
	p://www.pdb.org/pdb/results/results.do?o	utformat=	🔊 ක් 🔹 Kar Google 🖉
*** RCSB PDB : Query Results	- de -		-
Deposition All Deposit Services Electron Microscopy NNR Validation Server BioSync Beamline Related Tools Search durand Search	3H57 Myoglobin Cavity Image: Characteristics Classification Compound Compound	Mutant H64LV68N Deoxy form Release Date: 05-May-2009 Exp. Method: X-RAY DIFFRACTION Resolution: 1.70 Å Oxygen Storage Oxygen Transport Molecule: Myoglobin Olymer: 1 Type: polypeptide(L) Chains: A Mutation: H64L, V68N, D122N	Length: 154
Advanced Search Latest Release Latest Publications Sequence Search Ligand Search Unreleased Entries Browse Database Histograms Results: Query (308 hits): • Query Results • Query History	Authors	Soman, J.P., Olson, J.S.P Mutant H64LV68N Met form Release Date: 05-May-2009 Exp. Method: X-RAY DIFFRACTION Resolution: 1.80 Å Oxygen Stronge Oxygen Transport Molecule: Myoglobin Polymer: 1 Type: polypeptide(L) Chains: A Mutation: H64L.V68N. D122N	Length: 154
Query Instant Save Query to MyPDB Tools File Downloads File Formats Services: RESTful SOAP Widgets Compare Structures Charaction Looking at Structures Molecule of the Month Educational Resources	Authors 2 W6V Characteristics Characteristics Compound	MULTADOIT: H64L, V58N, 0122N Soman, J.P., Olson, J.S.P. HUMAN DEOXY HEMOGLOBIN A IN COMPLEX WITH XENON Release Date: 28-Apr-2009 Exp. Method: X-RAY DIFFRACTION Resolution: 1.80 Å Oxygen Transport Molecule: HEMOGLOBIN SUBUNIT ALPHA Polymer: 1 Type: polypeptide(L) Chains: A,C Fragment: CHAIN ALPHA, RESIDUES 2-142 Molecule: HEMOGLOBIN SUBUNIT BETA Polymer: 2 Type: polypeptide(L) Chains: B,D	Length: 141 Length: 146
Dana	Authors	Fragment: CHAIN BETA, RESIDUES 2-147 Miele, A.E.P., Draghi, F.P., Sciara, G.P., Johnson, K.A.P., Renzi,	F.P., Vallone, B.P., Brunori, M.P., Savino, C.P

Usually, there are multiple entries for the protein of interest. The entries may differ in the experimental methods or conditions used to resolve the protein's structure. You may have to browse through several entries before you find the right protein. However, for educational purposes, oftentimes the differences are negligible.

Clicking on the title of the entry will transfer you to a page that contains further information about the protein and links to download the PDB file. For example, below is the entry for "CRYSTAL STRUCTURE OF RECOMBINANT SPERM WHALE MYOGLOBIN UNDER 1ATM OF XENON". To download the PDB file, click **Download Files** in the upper right hand corner.

Click on PDB File (Text) to download the PDB file.

Loading a PDB File

Run VMD. This will cause three windows to appear on the screen. PDB files can be loaded from the **VMD Main** window by going to the **File** menu and clicking on **New Molecule**. You can then browse for the PDB file. Once you load the file, the three-dimensional molecular structure will appear in the **OpenGL window**.

VMD Main				
File Molecule Graphics Di	splay	Mouse	Extensions	Help
New Molecule		Atoms	Frames	Vol
Save Coordinates				
Load State				
Save State				
Log Tcl Commands to Console				
Log Tcl Commands to File				── ⇒
Turn Off Logging	ib 1	speed	1	
Render				
Quit				

Interaction Modes

The user can interact with the molecule in a variety of ways. The user can rotate, translate and scale (zoom) the molecule. Each of these interactions modes can be accessed via the **Mouse** menu in the **VMD Main** window or using a shortcut key listed below. After the interaction mode has been selected, click on the **OpenGL** window with the left mouse button and drag the mouse. By default, VMD starts in **Rotate Mode**.

Mode	Shortcut Key	Description		
Rotate	r	Rotates the molecule		
Translate t		Translates the molecule		
Scale	S	Scales the molecule (zoom)		
Center	С	Centers on an atom		

Measuring Structural Features

You can place labels that specify the distance between two atoms, the angle formed by three atoms and the dihedral angle formed by four atoms. To do so, select the particular feature you would like to label from the Mouse menu in the VMD Main window or using a shortcut key listed below. Then click on the atoms you would like to measure.

VMD Main			
File Molecule Graphics Display	Mouse Extensions	Help	
ID T A D F Molecule 0 T A D F C:\Documents and Set	Rotate Mode Translate Mode Scale Vode Center Query	r ol t s c	
Luup Step 1	Label Move Force Move Light O Add/Remove Bond: O Pick	C Ati C Bo C Ar C Ar C Dil S p	oms 1 onds 2 igles 3 hedrals 4

Feature Shortcut Key		Description
Bond length	2	Distance between two atoms
Angle	3	Angle between three atoms
Dihedral Angle	4	Dihedral angle between four atoms

Changing the Drawing Method

Atoms and molecules can be visualized with various drawing methods. To change the drawing method, go to **Graphics** \rightarrow **Representations** and then click on the **Drawing Method** menu.

Drawing Method	Description
Lines	Default method
HBonds	Draws hydrogen bonds
VDW	Space filling visualization
СРК	Ball and stick visualization
Licorice	Stick visualization
Ribbons/New Ribbons	Draws backbone of DNA/protein as a ribbon
Cartoon/New Cartoon	Draws secondary structure of proteins
Surf	Draws a surface around the molecule
Beads	Draws residues as beads

Changing the Coloring Method

You can change the way atoms and molecules are colored. This can be done by going to **Graphics** \rightarrow **Representations** and then clicking on the **Coloring Method** menu. By default, VMD starts with the **Name** method that colors atoms as listed below.

Hydrogen White Carbon Cvan Oxygen Red Nitrogen Blue Phosphorus Brown Sulfur Yellow

Default Coloring Method (Name)

Changing the Selected Atoms

You can choose to visualize a subset of the atoms in the PDB file by changing the text in the Selected Atoms box in the Graphical Representations window (Graphics \rightarrow Representations). To determine what selections are available, click on the Selections tab of the Graphical Representations window.

Atom Selection	Description					
all	Show all atoms					
protein	Show only protein atoms					
backbone	Displays backbone atoms					
noh	Do not display hydrogen atoms					
resname X	Displays atoms of residue X					
name X	Display atoms named X					
resid X	Display residue number X					

Some Common Atom Selections

Superimposing Representations

You can superimpose multiple representations to emphasize certain features of a molecule. To generate a new representation, click on **Create Rep** in the **Graphical Representations** window. You can then apply new drawing methods, coloring methods and/or atom selections to this new representation.

🔲 Graphical Repr	esentations	
Se	elected Molecu	le
0: Water		
Create Rep		Delete Rep
Style	Color	Selection
Lines	Name	ali
9	Selected Atoms	;
all		
Draw style Select Coloring Metho Name Drawing Metho Lines	ctions Traject d T Op d T	ory Periodic Material aque
Apply Cha	Thickness 🔌	(1))

Loading and Playing a Trajectory

VMD can play an animation of a molecule if provided with a trajectory file. Like PDB files, trajectory files come in many different formats. To load a trajectory right click on the molecule name in the **VMD Main** window and select **Load Data Into Molecule**. Then browse and select the desired trajectory.

The trajectory can be played using the arrow buttons at the bottom of the **VMD Main** window. The speed can be adjusted with the slider in the bottom right hand corner.

Saving/Loading a State File

After applying your own visualization style to the PDB file, you can save your work in a VMD state file. You can then load the state file at a later time and it will load the PDB file along with the changes that you made. State files have a .vmd file extension. To save a state file, go to **File** \rightarrow **Save State** in the **VMD Main** window. To load a state file, go to **File** \rightarrow **Load State**.

Saving an Image

To save a screenshot of the contents of the **OpenGL** window in the **File** menu of the **VMD Main** window go to: **File** \rightarrow **Render** \rightarrow **Start Rendering**

Using the default renderer takes a screen shot of the VMD OpenGL window and saves it as an image.

Saving an Image with Lighting and Shadow Effects

You can also save images that include lighting and shadow effects (see figure below of hemoglobin).

First, specify the strength of the lighting by going to **Display** \rightarrow **Display Settings**

🔲 VMD Main						<
File Molecule Graphics	Display	Mouse	Ex	tensions	Help	
ID TADF Molecule	Reset Vie Stop Rot	ew ation	п	Frames	Vol	
	© Ortho	araphic				
	🗖 Antiali	asing				
	🗖 Depth	Cueing				
	🗖 Culling	3				
📕 💶 zoom 🗖 🛛 📘 Loop 💌	🗌 FPS Ir	ndicator				
	🗹 Light ()				
	🗹 Light '	l				
	🗌 Light 2	2				
1	🗌 Light 3	3				
	Axes					
	Backgrou	und				
	Stage		►			
	Stereo		►			
	Cachemo	ode	۲			
	Renderm	iode				
	Display S	Gettings				

Turn **Shadows** and **Ambient Occlusion** on. Adjust **AO Direct** and **AO Direct** to your desired value (values of 0.70 for both usually works pretty well).

E	Display Settin	gs		_			×
					_		Τ
	Near Clip	-	•	0.50)		
	Far Clip	(¢	10.00)	•	
	Eye Sep	(¢	0.06)	•	
	Focal Length	4	ł	2.00)	۶	
	Screen Hgt	4	ł	6.0	•		
	Screen Dist	4	ł	-2.0)	•	
	Cue Mode	E	kp2	2	ľ	•	
	Cue Start	()	4	0.50)	₽	
	Cue End	((4	10.00)	₽	
	Cue Density	4	(0.40)	•	
ľ	External Re	eno	der	er Opti	on	s	
	Shadows	ο	n		ľ	•	
	Amb. Occl.	ο	n			•	
	AO Ambient	4	(0.70	•		
	AO Direct	-	•	0.70)	۲	

Go to File \rightarrow Render and choose TachyonInternal as the renderer and click "Start Rendering". It may take a few minutes to render the scene.

File Render Controls	
Render the current scene to a file. Render using: TachyonInternal ▼ Filename:	Droupo
Render Command: explorer %s	pre default
Start Rendering	